#### THE JOURNAL OF ANTIBIOTICS

# NOVEL ANTINEMATODAL AND ANTIPARASITIC AGENTS FROM PENICILLIUM CHARLESII

# II. STRUCTURE DETERMINATION OF PARAHERQUAMIDES B, C, D, E, F, AND G

J. M. LIESCH and C. F. WICHMANN

Merck Sharp & Dohme Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, U.S.A.

(Received for publication March 3, 1990)

Paraherquamides B (2,  $C_{27}H_{33}N_3O_4$ ), C (3,  $C_{28}H_{33}N_3O_4$ ), D (4,  $C_{28}H_{33}N_3O_5$ ), E (5,  $C_{28}H_{35}N_3O_4$ ), F (6,  $C_{28}H_{35}N_3O_3$ ), and G (7,  $C_{28}H_{35}N_3O_4$ ) are novel metabolites of *Penicillium* charlesii. The structures of these compounds have been determined by NMR and MS analysis.

The fermentation, isolation, and characterization of six novel analogs  $(2 \sim 7)$  of paraherquamide<sup>1)</sup> (1) have been reported in the preceding paper<sup>2)</sup>. In this paper, the structure determination of these compounds is described.

### **Results and Discussion**

The structures of the present compounds were determined based upon interpretation of their NMR and MS and comparison with previously reported paraherquamide<sup>1)</sup> (1). Paraherquamide (1) has the MW 493 ( $C_{28}H_{35}N_3O_5$ ) and exhibits critical fragment ions at m/z 434, 165, and 163 in its EI-MS. The fragment ion at m/z 434 corresponds to neutral loss of N-methylformamide from the molecular ion. Cleavage of bonds C-20~C-21 and C-10~C-3 (see 1) with loss of N-methylformamide affords m/z 163, the saturated





Table 1. <sup>1</sup>H NMR data for paraherquamides  $(1 \sim 7)^a$ .

|                 |                                                            | TI TUTTE Guid for parallel |                                          |                      |
|-----------------|------------------------------------------------------------|----------------------------|------------------------------------------|----------------------|
| Proton          | 1 <sup>b</sup>                                             | 1                          | 2                                        | 3                    |
| 4-H             | 7 03 d (8 1)                                               | 6 84 d (7 3)               | 6 85 d (8 2)                             | 686 d (8 2)          |
| 5.11            | 6 66 d (8 1)                                               | 6.68 + (7.3)               | 6 67 4 (8 2)                             |                      |
| 10 U.           | 267 + (152)                                                | $2.65 \pm (16.1)$          | $0.07 \pm (0.2)$                         | 0.00 d (0.0)         |
| 10-114          | $1.07 \pm (15.3)$                                          | 2.05  d (10.1)             | 2.07 d (15.2)                            | 2.68 d (15.2)        |
| 10-HD           | 1.97 d (15.4)                                              | 1.87 d (15.6)              | 1.87 d (15.1)                            | 1.88 d (15.4)        |
| 12-Ha           | 2.58 dd (1.8, 11.4)                                        | 2.55  dd (2.2, 11.0)       | 2.61 dd (1.0, 11.5)                      | 2.68 dd (1.2, 11.2)  |
| 12-Hb           | 3.65 d (11.4)                                              | 3.58 d (10.8)              | 3.59 d (10.9)                            | 3.63 d (10.7)        |
| 15-Ha           | 1.75° dd                                                   | 1.80° m                    | 1.39° m                                  | 2.55° m              |
| 15-Hb           | 2.18° m                                                    | 2.24° m                    | 2.13° m                                  | 2.55° m              |
| 16-Ha           | 2.14° m                                                    | 2.18° m                    | 2.13 m                                   | 2.29° m              |
| 16-Hb           | 3.15° ddd                                                  | 3.17° ddd                  | 3.03 m                                   | 3.06° m              |
| 19-Ha           | 1.83 dd (10.3, 12.9)                                       | 1.77 dd (10.8, 10.8)       | 1.83 m                                   | 2.03 dd (11.4, 12.3) |
| 19-Hb           | 1.71 dd (11.0, 12.9)                                       | 1.75 dd (10.5, 12.5)       | 1.64 dd (10.4 12.4)                      | 1.65 dd (9.5, 12.3)  |
| 20-H            | 3.00 ddd                                                   | 2.96 ddd                   | 2.98 m                                   | 3.06 m               |
|                 | (1.7, 10.5, 10.5)                                          | (20, 103, 103)             | 2.90 11                                  | 5.00 m               |
| 22-H            | 111 8                                                      | 1.08 e                     | 1.09 c                                   | 1.00 s               |
| 22-11           | 0.82 c                                                     | 0.84 c                     | 0.82 0                                   | 1.09 5               |
| 23-11           | $6.36 \pm (7.7)$                                           | (.045)                     | (20 + (77))                              | (22 + (77))          |
| 24-11           | 0.50 ((7.7)                                                | 0.52 0 (7.8)               | 0.32 d (7.7)                             | 6.33 d (7.7)         |
| 23-FI           | 4.9/ d (/.8)                                               | 4.90 a (6.8)               | 4.89 d (/./)                             | 4.90 d (7.7)         |
| 2/-H            | 1.39° s                                                    | 1.41° s                    | 1.41 <sup>a</sup> s                      | 1.41° s              |
| 28-H            | 1.42 <sup>a</sup> s                                        | 1.43 <sup>a</sup> s        | 1.43 <sup>ª</sup> s                      | 1.44 <sup>a</sup> s  |
| 29-H            | 2.99 s                                                     | 2.99 s                     | 3.01 s                                   | 3.01 s               |
| 14-OH           | 2.75 br s                                                  | 2.66 br s                  |                                          |                      |
| 1-H             | 9.45 br s                                                  | 7.50 br s                  | 7.41 br s                                | 7.41 br s            |
| 14-H            |                                                            |                            | 1.83 <sup>d</sup> m, 2.49 <sup>d</sup> m | _                    |
| 30-H            | 1.54 s                                                     | 1.56 s                     |                                          | 4.97 m (<2),         |
|                 |                                                            |                            |                                          | 5.13 m (<2)          |
|                 |                                                            |                            |                                          |                      |
| Proton          | 4                                                          | 5                          | 6                                        | 7                    |
| 4-H             | 6.86 d (8.2)                                               | 6.84 d (8.5)               | 6.94 d (8.4)                             | 6.93 d (8.5)         |
| 5-H             | 6.68 d (8.2)                                               | 6.67 d (7.5)               | 6.42 d (8.3)                             | 6.42 d (8.2)         |
| 10-Ha           | 2.66 d (15.4)                                              | 2.66 d (15.9)              | 2.64 d (15.0)                            | 2.64 d (15.6)        |
| 10-Hb           | 1 89 d (15 4)                                              | 1.86 d (16.0)              | 183 d (158)                              | 1.85 d (15.7)        |
| 12-Ha           | 2.61 dd (1.4, 11.2)                                        | 2.51  br d (10.6)          | 2.50  dd (1.0, 10.7)                     | 2.56 dd (1.5, 11.5)  |
| 12-Hb           | 3.67 d (10.9)                                              | 3.56  br  d (10.7)         | 3.54 d (11.4)                            | 3.58  br  d(11.2)    |
| 15 Ha           | 2 36 ddd                                                   | 1.75 dddd                  | 1 75 dddd                                | 1.70 m               |
| 1 <b>5-11</b> a | (1500100)                                                  | (45, 10, 7, 10, 7, 10, 7)  |                                          | 1.79 11              |
| 15 176          | (1.5, 6.6, 15.0)                                           | (4.3, 10.7, 10.7, 10.7)    | (4.3, 10.0, 10.0, 10.0)                  | 2.25                 |
| 13-110          | (8.0. 8.0. 12.7)                                           | 1.97 m                     | 1.97 m                                   | 2.25 m               |
| 16 11           | (8.9, 8.9, 13.7)                                           | 2.20                       | 0.00.111                                 | • •                  |
| 16-Ha           | 2.27 ddd                                                   | 2.20 m                     | 2.20 ddd                                 | 2.20 m               |
|                 | (8.0, 8.0, 8.6)                                            | a 1a                       | (5.5, 8.9, 10.6)                         |                      |
| 16-Hb           | 3.22 ddd                                                   | 3.13 m                     | 3.12 ddd                                 | 3.18 ddd             |
|                 | (1.5, 9.0, 9.0)                                            |                            | (4.4, 9.0, 9.0)                          | (4.5, 9.0, 9.0)      |
| 19-Ha           | 1.57 dd (9.9, 12.4)                                        | 2.00 dd (11.0, 11.2)       | 2.00 dd (11.1, 11.5)                     | 1.82 dd (10.6, 12.8) |
| 19-Hb           | 1.41 m                                                     | 1.38 m                     | 1.38 m                                   | 1.76 dd (10.4, 12.9) |
| 20-H            | 2.96 m                                                     | 2.96 m                     | 2.98 m                                   | 2.98 ddd             |
|                 |                                                            |                            |                                          | (1.5, 10.8, 10.8)    |
| 22-H            | 1.10 s                                                     | 1.08 s                     | 1.07 s                                   | 1.09 s               |
| 23-H            | 0.82 s                                                     | 0.84 s                     | 0.83 s                                   | 0.84 s               |
| 24-H            | 6.32 d (7.7)                                               | 6.33 d (8.2)               | 6.34 d (9.6)                             | 6.40 d (9.8)         |
| 25-H            | 4.90 d (7.7)                                               | 4.90 d (8.0)               | 5.77 d (9.7)                             | 573 d (99)           |
| 27-H            | 1 41 <sup>d</sup> s                                        | 1 41 <sup>d</sup> s        | 1 41 <sup>d</sup> s                      | 1 41 <sup>d</sup> s  |
| 27-11           | 1 / 2 <sup>d</sup> e                                       | 1/120 0                    | 1.71.3<br>1.41 <sup>d</sup> c            | 1.71 S<br>1 A A d s  |
| 20-11           | 2.01 0                                                     | 2.07 a                     | 1.44 8                                   | 1.44° S              |
| 27-11<br>14 OUT | 5.01 S                                                     | 2.71 S                     | 2.918                                    | 5.00 S               |
| 14-OH           |                                                            |                            |                                          | 2.69 br s            |
| I-H             | 7.41 Dr s                                                  | 1.5/ br s                  | 8.32 br s                                | 8.96 br s            |
| 14-H            |                                                            | 1.89 m                     | 1.89 m                                   |                      |
| 30-H            | 2.93 d (4.3),                                              | 1.36 d (6.8)               | 1.37 d (6.9)                             | 1.57 s               |
|                 | 3(1)(2)(4)(4)(4)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4) |                            |                                          |                      |

<sup>a</sup> Spectra recorded at 400 MHz in CD<sub>2</sub>Cl<sub>2</sub> except where noted. Chemical shifts in ppm referenced to CD<sub>2</sub>Cl<sub>2</sub> at 5.32 ppm as internal standard. Data in parentheses are coupling constants in J=Hz. ddd=doublet of doublet of doublets.
<sup>b</sup> Spectrum taken in acetone-d<sub>6</sub>, referenced to solvent peak at 2.04 ppm as internal standard.
<sup>c</sup> Spin system showing second order effects, observed coupling constants are not accurate.
<sup>d</sup> Interchangeable assignments.

|        |                |    | 140.0 2. 0                    |        |                |   |                     |
|--------|----------------|----|-------------------------------|--------|----------------|---|---------------------|
| Carbon | $\delta$ (ppm) | m  | <sup>1</sup> J <sub>С-Н</sub> | Carbon | $\delta$ (ppm) | m | ${}^{1}J_{\rm C-H}$ |
| C-2    | 182.34         | s  |                               | C-16   | 52.04          | t | 140                 |
| C-3    | 63.32          | s  |                               | C-18   | 171.47         | s | _                   |
| C-4    | 120.73         | d  | 161                           | C-19   | 22.53          | t | 133                 |
| C-5    | 117.31         | d  | 162                           | C-20   | 51.97          | d | 130                 |
| C-6    | 146.23         | s  | _                             | C-21   | 46.62          | s |                     |
| C-7    | 135.48         | S  |                               | C-22   | 20.59          | q | 126                 |
| C-8    | 132.71         | s  |                               | C-23   | 23.91          | q | 126                 |
| C-9    | 125.48         | s  |                               | C-24   | 139.06         | đ | 193                 |
| C-10   | 37.44          | t  | 131                           | C-25   | 115.30         | d | 155                 |
| C-11   | 65.55          | S. |                               | C-26   | 80.00          | s |                     |
| C-12   | 59.27          | t  | 135                           | C-27   | 29.92          | q | 127                 |
| C-13   | 71.46          | s  |                               | C-28   | 30.06          | q | 128                 |
| C-14   | 78.03          | s  |                               | C-29   | 25.96          | q | 129                 |
| C-15   | 38.57          | t  | 131                           | C-30   | 19.17          | q | 138                 |

Table 2. <sup>13</sup>C NMR data for 1.

Chemical shifts in ppm referenced to  $CD_2Cl_2$  at 53.8 ppm as internal standard. All coupling constants are in J=Hz. Carbon numbering is based on that of the marcfortines<sup>3</sup>).

m: Multiplicity.

# Fig. 1. One-bond ${}^{13}C{}^{-1}H$ chemical shift correlation (HETCOR) NMR spectrum for paraherquamide (1) at 19°C in CD<sub>2</sub>Cl<sub>2</sub> at 100 MHz.



fused ring portion of the molecule. The lower intensity m/z 165 ion appears to result from loss of methylisocyanate (CH<sub>3</sub>N=C=O) rather than N-methylformamide.

The published <sup>1</sup>H NMR spectrum<sup>1)</sup> of **1** in CDCl<sub>3</sub> is complicated by the poor spectral characteristics in this solvent. Subsequent <sup>13</sup>C and <sup>1</sup>H NMR studies with **1** in CD<sub>2</sub>Cl<sub>2</sub> and  $(CH_3)_2CO-d_6$  led to complete assignment of all the resonances (Tables 1 and 2). In particular, <sup>13</sup>C-<sup>1</sup>H correlation experiments (HETCOR, Fig. 1) were critical in definitively assigning the following proton resonances on the

#### VOL. XLIII NO. 11

terminal pyrrolidine ring: 3.17 and 2.18 ppm to C-16 (52.04 ppm), and 2.24 and 1.80 ppm to C-15 (38.57 ppm). Two and three bond  $^{13}C^{-1}H$  correlations (see Fig. 2) determined by a long-range HETCOR experiment and long-range coupling data from the 'gated'  $^{13}C$  spectrum confirmed the  $^{13}C$  assignments. These assignments include several reassignments of the carbon resonances for the marcfortines as previously published<sup>3)</sup>.

The molecular formula  $C_{27}H_{33}N_3O_4$  was determined for paraherquamide B (2) by HR-MS. This formula is CH<sub>2</sub>O less than that of 1. A strong  $(M-59)^+$  ion is observed at m/z 404 which suggests the presence of the paraherquamide *N*-methylamide moiety. The critical ions at m/z 133 and 135 reflect the CH<sub>2</sub>O difference (30 amu, *cf.* 163 and 165) and indicate that the change is in the saturated fused ring system, presumably at C-14. Consideration of the <sup>1</sup>H NMR data (Table 1), including COSY data, Fig. 2. Multiple bond <sup>13</sup>C-<sup>1</sup>H chemical shift correlation data obtained from HETCOR experiments<sup>8)</sup> for paraherquamide (1) in CD<sub>2</sub>Cl<sub>2</sub>.

Two- and three-bond carbon-hydrogen shift correlations are shown with arrows.



led to the C-14-desmethyl, C-14-deshydroxy structure 2. The methyl singlet resonance in the proton spectrum at 3.01 ppm indicated the presence of the amide *N*-methyl functionality. The absence of the C-14-methyl and the C-14-hydroxyl resonances observed at 1.56 and 2.66 ppm, respectively, in 1 and the addition of two new one proton multiplets at 1.83 and 2.49 ppm (14-H) confirmed the absence of the methyl and hydroxyl substituents on the pyrrolidine ring.

Paraherquamide C (3) has the molecular formula  $C_{28}H_{33}N_3O_4$  by HR-MS, and this formula is  $H_2O$  less than that of 1. A strong  $(M-59)^+$  ion is observed at m/z 416 and the critical saturated fused ring ions are observed at m/z 145 and 147 rather than at m/z 163 and 165 as in 1, thus reflecting the absence of the equivalent of  $H_2O$  presumably at the C-14 position. <sup>1</sup>H NMR data (Table 1), including COSY, showed an absence of the C-14-methyl and C-14-hydroxyl proton resonances observed in 1 and their replacement with two one proton resonances at 4.97 and 5.13 ppm (30-H). The four spin system involving the methylene protons on carbons 15 and 16 remained, with the two resonances on C-15 downfield shifted to 2.55 ppm from 1.80 and 2.24 ppm as in 1. This data, supported by the small coupling constants of the 4.97 and 5.13 ppm (30-H) olefinic resonances (see Table 1), led to the assignment of the exocyclic vinylic moiety involving C-14 and C-30 and structure **3** for paraherquamide C.

The molecular formula  $C_{28}H_{33}N_3O_5$  was determined for paraherquamide D (4) by HR-MS and this formula is  $H_2$  less than that for 1. The additional unsaturation in 4 is generally located in the saturated fused ring portion of the molecule by the critical ions at m/z 161 and 163 which are down 2 mass units form 163 and 165 as in 1. An intense  $(M-59)^+$  is again observed at m/z 432 indicating the presence of the standard *N*-methylamide moiety. <sup>1</sup>H NMR data showed the presence of the amide *N*-methyl singlet at 3.01 ppm. The C-14-hydroxyl and C-14-methyl proton resonances were absent and two doublets were observed at 2.93 and 3.08 ppm (30-H) each with a coupling constant of J=4.3 Hz. <sup>1</sup>H COSY indicated that these resonances were coupled to each other, and the chemical shifts and coupling constants of these

#### THE JOURNAL OF ANTIBIOTICS

resonances together with the absence of the C-14-methyl resonance observed for 1 suggested the presence of a spiro-epoxide moiety. The location of the epoxide on the pyrrolidine ring was confirmed by analysis of the remaining resonances. A four spin system consisting of resonances at 1.92 (15-Hb), 2.36 (15-Ha), 2.27 (16-Ha) and 3.22 (16-Hb) ppm was assigned to the methylene protons on carbons 15 and 16. The relative stereochemistry of the protons was assigned on consideration of the coupling constants and ring geometry. The J=1.5 Hz coupling between the 3.22 (16-Hb) and 2.36 (15-Ha) ppm resonances implied a near 90 degree dihedral angle between these protons. This established a J=9 Hz geminal coupling between the 3.22 (16-Hb) and 2.27 ppm (16-Ha) resonances and a J=13.7 Hz geminal coupling between the 2.36 (15-Ha) and 1.92 ppm (15-Hb) resonances. Both these values are in good agreement with observed literature geminal coupling constants for pyrrolidine ring systems<sup>4</sup>). <sup>13</sup>C NMR data including Attached proton test<sup>5</sup>), used to establish carbon multiplicities confirmed the structural assignment. In comparison with paraherquamide, the carbon data indicated an upfield shift for C-15 from 38.57 to 31.09 ppm and for C-14 from 78.03 to 63.00 ppm, and replacement of the C-30 (19.17 ppm) methyl signal with a methylene resonance at 46.48 ppm.

Paraherquamide E (5) has the molecular formula  $C_{28}H_{35}N_3O_4$  by HR-MS and this formula is O (oxygen) less than that of 1. A strong fragment ion at m/z 418 which corresponds to  $(M-59)^+$  is observed suggesting the presence of the standard *N*-methylamide moiety. The critical ions at m/z 147 and 149 reflect the 16 mass unit difference from 1 and indicate that the oxygen is missing from the saturated fused ring portion of the molecule, presumably from C-14. The <sup>1</sup>H NMR spectrum obtained for 5 was quite similar to that of 1. The critical differences noted were the absence of the C-14-hydroxyl resonance, the appearance of a new methine multiplet at 1.89 ppm (14-H), and the change in the C-14-methyl resonance from a singlet at 1.56 ppm to an upfield shifted doublet ( $J_{H-H}=6.8$  Hz) at 1.36 ppm. These observations allowed structural assignment of 5 as the C-14-deshydroxy derivative of 1.

The molecular formula  $C_{28}H_{35}N_3O_3$  was determined for paraherquamide F (6) by HR-MS and this formula is  $O_2$  less than that of 1. The standard *N*-methylamide moiety is indicated by the strong  $(M - 59)^+$ at m/z 402. The critical ions at m/z 147 and 149 indicate that one oxygen is missing from the saturated fused ring portion of the molecule, presumably from C-14, and by difference, the second oxygen equivalent must be missing from the indolone portion of the molecule. The <sup>1</sup>H NMR spectrum showed the absence of the C-14-hydroxyl resonance and the change in the C-14-methyl resonance (1.56 ppm singlet to 1.37 ppm doublet coupled to 1.89 ppm (14-H) methine multiplet) as observed for 5. In addition, the spectrum of 6 exhibited a downfield shift of the C-25 olefinic proton resonance from 4.90 to 5.77 ppm with a change in the 24-H ~ 25-H coupling constant from J=7.8 to 9.7 Hz. These changes are consistent with deletion of the oxygen  $\alpha$  to the C-24 ~ C-25 double bond to form a 2,2-dimethyl- $\alpha$ -pyran ring as in 6 rather than the dihydro-1,4-dioxepin of 1.

Paraherquamide G has the molecular formula  $C_{28}H_{35}N_3O_4$  by HR-MS and this formula is O (oxygen) less than that of 1. The characteristic  $(M-59)^+$  ion suggests the standard *N*-methylamide moiety. The critical ions observed at m/z 163 and 165 as in 1, suggest by difference that the oxygen must be missing from the indolone portion of the molecule. The <sup>1</sup>H NMR data for 7 displayed a close similarity to 1 except for the C-25 olefinic proton which was shifted downfield to 5.73 ppm with a concomitant change in the 24-H ~ 25-H coupling constant as observed in 6, again indicating a 2,2-dimethyl- $\alpha$ -pyran ring rather than the dihydro-1,4-dioxepin of 1.

The relative stereochemistry of the above compounds was established via pure-absorptive mode 2D

|       | Table 3. EI-WIS of compounds $2 \sim T (m/2 (relative intensity))$ .                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------|
| <br>2 | 463.2488 (4, M <sup>+</sup> , C <sub>27</sub> H <sub>33</sub> N <sub>3</sub> O <sub>4</sub> ), 404 (78), 135 (48), 133 (100)  |
| 3     | 475.2476 (8, M <sup>+</sup> , C <sub>28</sub> H <sub>33</sub> N <sub>3</sub> O <sub>4</sub> ), 416 (30), 147 (40), 145 (100)  |
| 4     | 491.2436 (68, M <sup>+</sup> , C <sub>28</sub> H <sub>33</sub> N <sub>3</sub> O <sub>5</sub> ), 432 (80), 163 (36), 161 (100) |
| 5     | 477.2602 (2, M <sup>+</sup> , C <sub>28</sub> H <sub>35</sub> N <sub>3</sub> O <sub>4</sub> ), 418 (48), 149 (36), 147 (100)  |
| 6     | 461.2665 (2, M <sup>+</sup> , C <sub>28</sub> H <sub>35</sub> N <sub>3</sub> O <sub>3</sub> ), 402 (42), 149 (36), 147 (100)  |
| 7     | 477.2612 (2, M <sup>+</sup> , C <sub>28</sub> H <sub>35</sub> N <sub>3</sub> O <sub>4</sub> ), 418 (24), 165 (28), 163 (100)  |
| <br>  |                                                                                                                               |

Table 3. EI-MS of compounds  $2 \sim 7$  (m/z (relative intensity))

NOE experiments on several of the structural analogs  $(4 \sim 7)$ . A representative data set is presented for 7 in Fig. 3. The medium intensity NOE's from 12-Hb and 4-H to the 22-H methyl group were critical in establishing the relative stereochemistry of the spiro center. The NOE data also allowed stereo-specific proton assignments of the geminal proton pairs for 10-H, 12-H, 15-H, 16-H, 19-H and 20-H, and one set of geminal methyl groups (22-H and 23-H). Similar sets of NOE results to those presented for 7 in Fig. 3 were obtained for the analogs, indicating the same relative stereochemistry as 7. Extrapolation to the other analogs and paraherquamide led to the proton asignments as in Table 1 and the relative stereochemistries shown for  $1 \sim 7$ . The NOE determined stereochemistry is in agreement with the stereochemistry established by the recently published crystal structure of a synthetic paraherquamide analog<sup>6)</sup> and the crystal structure of paraherquamide<sup>1)</sup>.

Fig. 3. NOE data in  $CD_2Cl_2$  for paraherquamide G (7).

The figure depicts <sup>1</sup>H-<sup>1</sup>H NOE's of weak (<2.5% of diagonal based on volume integration of diagonal and cross peak), medium ( $2.5 \sim 10\%$ ), and strong (>10%) intensities as dashed, solid, and bold arrows, respectively.



#### Experimental

<sup>1</sup>H NMR spectra were recorded at ambient room temperature in CD<sub>2</sub>Cl<sub>2</sub> on a Varian XL-400 NMR spectrometer at 400 MHz. Chemical shifts are shown in ppm relative to TMS at 0 ppm using the solvent peak at 5.32 ppm as internal reference. <sup>13</sup>C NMR spectra were recorded in CD<sub>2</sub>Cl<sub>2</sub> at ambient room temperature on a Varian XL-400 spectrometer at 100 MHz using Waltz-16 proton decoupling. Chemical shifts are given in ppm relative to TMS at 0 ppm using the solvent peak at 53.8 ppm as internal reference. <sup>1</sup>H-<sup>1</sup>H chemical shift correlation spectra for  $1 \sim 7$  (COSY): Spectra were recorded in CD<sub>2</sub>Cl<sub>2</sub> or (CH<sub>3</sub>)<sub>2</sub>CO-d<sub>6</sub> using the standard pulse sequence<sup>7</sup>). Typically, a 2K × 2K data set was accumulated in 512 increments with 16 or 32 transients for each value of t<sub>1</sub>. The delay time between scans was 1.0 second. <sup>1</sup>H-<sup>13</sup>C chemical shift correlation spectrum for 1 (HETCOR): Spectra were recorded in CD<sub>2</sub>Cl<sub>2</sub> using the standard pulse sequence<sup>8</sup>). A 512 × 2K data set was accumulated in 128 increments with 400 transients for each value of t<sub>1</sub>. The delay time between scans was optimized for <sup>1</sup>J<sub>CH</sub>=140 Hz. The related experiment was used to establish long-range connectivities, optimizing for a multiple bond <sup>13</sup>C-<sup>1</sup>H coupling constant of 7 Hz. The 512 × 2K data set was accumulated as above with 800 transients for each value of t<sub>1</sub>. Pure-absorptive mode 2D NOE effect for  $4 \sim 7$  (NOESY): Spectra were recorded in CD<sub>2</sub>Cl<sub>2</sub> for dilute (approximately 2.5 mg in 0.5 ml), degassed samples using the standard pulse

## THE JOURNAL OF ANTIBIOTICS

sequence with phase-sensitive detection<sup>9)</sup>. Typically  $2K \times 2K$  data sets were accumulated in 256 increments with 192 transients for each value of  $t_1$ . Mixing time was 0.5 second and the delay time between scans (equilibration delay) was 2.5 seconds.

MS were recorded on a Finnigan-MAT MAT212 instrument by EI at 90eV. Exact mass measurements were made on the same instrument at HR by the peak matching method using perfluorokerosene as the internal standard.

#### References

- YAMAZAKI, M.; E. OKUYAMA, M. KOBAYASHI & H. INOUE: The structure of paraherquamide, a toxic metabolite from *Penicillium paraherquei*. Tetrahedron Lett. 22: 135~136, 1981
- ONDEYKA, J. G.; R. T. GOEGELMAN, J. M. SCHAEFFER, L. KELEMEN & L. ZITANO: Novel antinematodal and antiparasitic agents from *Penicillium charlesii*. I. Fermentation, isolation and biological activity. J. Antibiotics 43: 1375~1379, 1990
- PRANGÉ, T.; M.-A. BILLION, M. VUILHORGNE, C. PASCARD, J. POLONSKY & S. MOREAU: Structures of marcfortine B and C (X-ray analysis), alkaloids from *Penicillium roqueforti*. Tetrahedron Lett. 22: 1977~1980, 1981
- COOKSON, R. C.; T. A. CRABB, J. J. FRANKEL & J. HUDEC: Geminal coupling constants in methylene groups. Tetrahedron (Suppl.) 1966: S355~S390, 1966
- 5) PATT, S. L. & J. N. SHOOLERY: Attached proton test for carbon-13 NMR. J. Magn. Reson. 46: 535~539, 1982
- 6) BLIZZARD, T. A.; G. MARINO, H. MROZIK, M. H. FISHER, K. HOOGSTEEN & J. P. SPRINGER: Chemical modification of paraherquamide. 1. Unusual reactions and absolute stereochemistry. J. Org. Chem. 54: 2657~2663, 1989
- BAX, A.; R. FREEMAN & G. A. MORRIS: Correlation of proton chemical shifts by two-dimensional fourier transform NMR. J. Magn. Reson. 42: 164~168, 1981
- BAX, A. & G. A. MORRIS: An improved method for heteronuclear chemical shift correlation to two-dimensional NMR. J. Magn. Reson. 42: 501~505, 1981
- STATES, D. J.; R. A. HABERKORN & D. J. REUBEN: A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J. Magn. Reson. 48: 286~292, 1982